Flow-Induced Noise Technical Group

Center for Acoustics and Vibration

Spring Workshop

April 30, 2014

Presented by:
Dean E. Capone, Group Leader
• The mission of the Flow-Induced Noise Group of the Center for Acoustics and Vibration is the understanding and control of acoustic noise and structural vibration induced by fluid flow.

• Topical Research Area Presentations
 - Dr. Ken Brentner: PSU-WOPWOP noise prediction code
 - Dr. Robert Campbell: Fluid Structure Interaction (FSI) Research, including A Wind Turbine Project
Ongoing Projects

- **Project Topic: Fluid-Structure Interaction (FSI) of a Flexible Strut with Strong Turbulent Upstream Vortices**
 - **Student:** Abe H. Lee (Ph.D in Acoustics)
 - **Advisors:** Dr. S.A. Hambric, Dr. R.L. Cambpell

- **Project Topic: Modelling and Measurement of Turbulent Boundary Layer Unsteady Shear Stress in Elastomer Layers**
 - **Student:** Cory Smith (Ph.D in Acoustics)
 - **Advisors:** Dr. D. E. Capone and T. A. Brungart

- **Project name: High Cycle Fatigue Simulations and Measurements**
 - **Sponsor:** Pratt & Whitney
 - **PI(s):** Philip Morris
 - **Students/degree levels:** Michael Lurie, PhD

- **Project name: Adjoint Design for Low Noise**
 - **Sponsor:** Office of Naval Research
 - **PI(s):** Philip Morris
 - **Students/degree levels:** Nidhi Sikarwar, PhD
• Ongoing projects
 – Project name: Simulation of Jet Noise Reduction Devices
 • Sponsor: Office of Naval Research
 • PI(s): Philip Morris
 • Students/degree levels: Matthew Kapusta, MS
 – Project name: Rotorcraft Broadband Noise Predictions
 • Sponsor: Bell Helicopter Textron Inc.
 • PI(s): Kenneth Brentner, Philip Morris
 • Students/degree levels: Abhishek Jain, MS
 – Project name: Nonlinear Sound propagation from Distributed Sources
 • Sponsor: Un-sponsored
 • PI(s): Philip Morris
 • Students/degree levels: Donald Hyatt, MS
An Overview of PSU-WOPWOP:
A General Purpose Ffowcs Williams – Hawkings Solver

Kenneth S. Brentner
Department of Aerospace Engineering

CAV Workshop – April 30, 2014
Historical Background – Ffowcs Williams – Hawkings Equation

J. E. Ffowcs Williams and D. L. Hawkings (1969)

- Laid the framework for treating sound field of a surface moving at high speed
- Surfaces are replaced by discontinuities in the flow-field
- Generalized conservation equations valid everywhere in space
- The FW-H equation is the most general form of Lighthill's acoustic analogy
Key Concepts: Ffowcs Williams–Hawkings Equation

- Rearrangement of Navier-Stokes equations into an inhomogeneous wave equation

\[\Box^2 p'(\vec{x}, t) = \frac{\partial}{\partial t} \left[Q \delta(f) \right] - \frac{\partial}{\partial x_i} \left[F_i \delta(f) \right] + \frac{\bar{\partial}^2}{\partial x_i \partial x_j} \left[T_{ij} H(f) \right] \]

\(f = 0 \) describes the integration surface

Thickness
displacement of fluid generates sound

Loading
accelerating force distribution generates sound (includes BVI noise)

Quadrupole
All volume sources, non-linear effects nonuniform sound speed
Rotor Noise Theory

- Aeroacoustics is governed by the conservation equations of fluid dynamics
 - Navier-Stokes equations
 - wave equation
- Three main computational approaches:
 - acoustic analogy
 - treats real flow effects by fictitious sources; exact in principle
 - Ffowcs Williams–Hawkings equation (1969) appropriate when solid bodies are present (Lighthill analogy)
 - Kirchhoff approach
 - based upon wave equation
 - actual sources replaced by their influence on a surface
 - direct computation (CFD and CAA)
 - high spatial and temporal accuracy needed
Comparison with Other Approaches

- **Acoustic analogy:**
 - FW-H equation (surface & volume integrals required)

 \[\Box^2 p'(\vec{x}, t) = \frac{\partial}{\partial t} [Q \delta(f)] - \frac{\partial}{\partial x_i} [F_i \delta(f)] + \frac{\partial^2}{\partial x_i \partial x_j} [T_{ij} H(f)] \]
 - practical approximation (only surface integrals)

 \[\Box^2 p'(\vec{x}, t) = \frac{\partial}{\partial t} [Q \delta(f)] - \frac{\partial}{\partial x_i} [F_i \delta(f)] \]

- **Kirchhoff:**
 - physical sources represented by mathematical sources on surface (only surface integrals)

 \[\Box^2 p'(\vec{x}, t) = \frac{\partial}{\partial t} [Q' \delta(\vec{f})] - \frac{\partial}{\partial x_i} [F'_i \delta(\vec{f})] \]
 - Common use inappropriate for most rotor noise prediction

- **Direct computation:**
 - limited to relatively near field (full domain discretized)
 - provides input to other approaches
PSU-WOPWOP

- Numerical solution to Farassat’s Formulation 1A of the FW-H equation
 - Requires geometric and loading or flow data as input
 - Arbitrary source and observer motion can be specified – including deformable surfaces
 - Many sources can be specified at one time (e.g., multiple rotors)
 - Observer parallel
- Accepts Variety of Input Data Types
 - Compact patch (Line)
 - Regular surfaces
 - Permeable acoustic data surfaces (ADS)

Used in varied applications
- Rotorcraft noise
 - Discrete frequency and broadband
 - Maneuver
 - Civil noise certification
 - Near real-time
- Permeable Surface applications
 - Wind turbine noise
 - Open rotor noise (commercial aircraft)
 - Jet noise
 - Landing gear and airframe noise
- Acoustic scattering
 - PSU-WOPWOP can compute the acoustic pressure gradient
Rotor Noise Prediction during a Complex Maneuver

- Very complicated source motion
 - Aircraft motion is complex
 - Each blade is moving in an independent, aperiodic trajectory
- Significant blade-vortex interaction during aggressive right turn

Supersonic Jet Noise and a Synthetic Phased Array

- Highly detailed CFD prediction provided input data for PSU-WOPWOP (ITAC and PSU)
- PSU-WOPWOP predicted the noise on two virtual arrays
- Acoustic array data used with advanced phased array processing (OptiNav)

Wind Turbine Noise Prediction

- Unsteady Navier-Stokes computation (OVERFLOW) of wind turbine flow field
- PSU-WOPWOP noise prediction

Acoustic Scattering for a Notional Quad Tiltrotor

- PSU-WOPWOP computes acoustic pressure gradient
- NASA FAST scattering code predicts scattered field

Sound Pressure Level 10 m below the front rotor plane (6 times rotor BPF : 91.6639 Hz, L=-0.5)
Questions?
Fluid-Structure Interaction (FSI) Efforts at the Penn State Applied Research Laboratory

Presented by:
Robert Campbell
Noise Control and Hydroacoustics Division
Applied Research Laboratory
The Pennsylvania State University

Presented at:
CAV Workshop
30 April 2014
Fluid-Structure Interaction

Fluid Phase Fraction

Fluid Force on Structure

No Fluid Slip/Flux at Surface

Structure Motion

Fluid Motion
• FSI Modeling Overview
 – ARL Partitioned FSI Solver

• Overset Grid Technology and FSI Simulations

• Application Examples
 – Unsteady Hydrofoil (in Cylinder Wake)
 – 3D Flag Benchmark
 – Wind Turbine

• Student Projects
Fluid–structure interaction (FSI):
Fully-coupled motion of a deformable solid and a surrounding and/or contained fluid

Two approaches to FSI modeling

- **Monolithic**
 - Governing equations for both the fluid and solid cast in terms of the same primitive variables (velocity and pressure)
 - Single discretization scheme applied to entire domain

- **Partitioned**
 - Fluid and solid domains modeled separately
 - Separate discretizations of each domain
 - Stress and displacement communication across the domain interface
• FSI solver based on a partitioned approach with body-fitted meshes:
 – Independent flow and structural solvers that communicate at the fluid/solid interface
• OpenFOAM for the flow solver
• Custom FEANL structure class for the structural solver
• fsiInterface class to interface the solvers
• Subiterations each time step to ensure fluid and structure interaction is converged
• Under-relaxed structural displacements to improve convergence
• Variable under-relaxation coefficient (ω) determined using Aitken’s method

\[u_i = \omega \hat{u}_i - (1 - \omega) u_{i-1} \]

Fixed-Point Iteration

\[\left| \hat{u}_{F/S,i} - \hat{u}_{F/S,i-1} \right| < \epsilon \]
• An overset mesh assembly is comprised of a set of overlapping grids
• Interpolation is performed across the overlapping boundaries in order to create a continuous domain
• Overset grids enable the meshing of complex geometries
 – Component grids can be built independently
 – Components can be easily modified, added, or removed
Overset Mesh Advantages: Translating Body

Continuous Re-Meshing
Overset Mesh Advantages: Translating Body

Continuous Re-Meshing Morphing Mesh
Overset Mesh Advantages:
Translating Body

Continuous Re-Meshing Morphing Mesh Overset Mesh
Overset Mesh Motion

Traditional Mesh Motion:
- Structural Displacements
- Apply as BC to Full Mesh Displacement

Overset Mesh Motion:
- Structural Displacements
- Apply as BC to Full Mesh Displacement
- Linear Solver for Mesh Displacement
- Move Mesh
- UpdateDCI (Suggar++)

Subset Overset Mesh Motion:
- Structural Displacements
- Apply as BC only to Overset Interface Mesh Displacement
- Linear Solver only for Overset Interface Mesh Displacement
- Move only the Overset Mesh
- UpdateDCI (Suggar++)

Significant savings in mesh motion calculations

Three-dimensional Flag Benchmark

- Three dimensional “Turek” experiment mounted in 12” Tunnel
- Goal is to publish 3D turbulent validation data for FSI simulations

Images provided by Cooper Elsworth/Grant Dowell
• Tip displacement is measured from the center of the flag trailing edge in the y-direction

• $Y = 0$ is determined by the mean of the location values
Objective

- Perform validation and verification of the overset FSI solver
- Simulate Grant’s 3D experiment
DOE Program: Cyber Wind Facility

- Highly resolved 4-D cyber data
- Coupled atmospheric turbulence-blade loadings-shaft torque data
- Coupled wave structure – platform motion – turbine loadings data
- Experiment design, test-bed, turbine design, controls concepts and testing
- Advanced correlations for ALM and other design tools using look-up tables

* Platform-Wave Hydrodynamics and 6-DOF Motions (Hybrid URANS/LES + VOF)
* Blade and Tower Elastic Deformation (FEM, Modal model + FSI)
* Blade Aerodynamics, Space-Time Loadings (Hybrid URANS/LES)
* Wake Turbulence Blade-Wake-Atmosphere (Actuator Vortex Body Embedding within LES)
* Wake-Turbine Interactions (Wind Plant)

Cyber Wind Facility
- Sensors, controllers, diagnostics
SOE-Sponsored “Cyber Wind Facility”

Moderately Convective Boundary Layer: Turbulence Structure Size similar to Rotor Diameter

Turbulence inflow at the “microscale”

Unsteady flow simulation over turbine blades
The Penn State Cyber Wind Facility Team

Jim Brasseur (PI), Eric Paterson, Sven Schmitz, Rob Campbell, Sue Haupt
Principal Investigators

Balaji Jayaraman, Ph.D., DOE
Research Associate, Mechanical Engrg

Brent Craven, Ph.D., DOE
ARL Research Associate

Tarak Nandi, DOE
PhD student, Mechanical Engineering

Alex Dunbar, DOE
PhD student, Mechanical Engineering

Javier Motta-Mena, DOE
PhD student, Mechanical Engineering

Ganesh Vijayakumar, NSF
PhD student, Mechanical Engineering

Adam W. Lavely, NSF
PhD student, Aerospace Engineering

Pankaj K. Jha, DOE
Graduate Student, Aerospace Engineering

Amir Mehdizadeh, DFG
Postdoctoral Fellow

Industry Partner: GE GR
Cyber Wind Facility: Single Rotating Blade in Atmosphere

Plane 10m in front of blade

U* X

Time = 0.0s

Pressure Torque per unit span (kN)

Torque (kNm)

Time = 0.0 s

u' = -2.5 m/s
Initial Spacing of 5.2 μm (on a 63 m blade!)

Parked Rotor Simulation with Uniform 10 m/s Inflow
• Abe Lee: Propeller Crashback
• Cooper Elsworth: Partitioned FSI Mesh Convergence Metrics
• Javier Motta-Mena: Wind Turbines with ABL Turbulence
• Kenneth Aycock: Blood Vessel and IVC Filter FSI
• Jason Sheldon: Flow-induced Loads by Unsteady Wake
• Erica Lieberknecht: FSI Monolithic Solver Development
• Grant Dowell: FSI 3D Flag Benchmark Experiment
• Nick LaBarbera: Towed Array Dynamics
• Jason Halwick: FSI for Cavitation Erosion
• Byron Gaskin: Cancer Cell Migration
• Michael McPhail: Human Voice Production
• We are/have organized FSI mini-symposia on FSI:
 – “Fluid-Structure Interaction Algorithms and Applications,” 10th World Congress on Computational Mechanics, Sao Paulo, Brazil, July 8-13, 2012