Penn State Center for Acoustics and Vibration (CAV)

Structural Vibration and Acoustics Group
Presented as part of the 2013 CAV Spring workshop

Stephen Hambric, Group Leader

April 2013

Marty Trethewey
Stephen Conlon
Andrew Barnard
Tim McDevitt
Tony Jun Huang
Micah Shepherd
Dan Russell

Sabih Hayek
John Fahnline
Robert Campbell
Kevin Koudela
Dan Linzell
James Chatterley
Today's topics

- Quiet rotorcraft roof panels
 - Dr. Steve Hambric

- Martin guitar structural-acoustics
 - Micah Shepherd, ARL and PhD student, Acoustics

- Requalification of CAV's hemi-anechoic room
 - Paul Bauch, MS student, Acoustics

- Sonic fatigue of aircraft panels
 - Matt Shaw, PhD student, Acoustics
Quiet Rotorcraft Roof Panels

Principal Investigators: Dr. S.A. Hambrick, Dr. K.L. Koudela, M.R. Shepherd (PhD, Acoustics), and D.B. Wess

Sponsor: NASA

Collaborators: Bell Helicopter, 150 Kansas State University
Rotorcraft Cabin Noise

- Strong transmission gear meshing tones excite roof panel

![Graph showing noise levels](image)

- Main rotor Bull gear mesh
- Main rotor Input Pinion gear mesh

10 dB
Baseline Panel

- Manufactured at Bell Helicopter (Textron)
Honeycomb core sandwich panel

• Stiff and lightweight
 – Carbon fiber face sheets
 – Nomex core
Baseline Panel – FE/BE modeling

- All solid quadratic elements, smeared face sheet properties
- BE model of surrounding air
Baseline Panel – FE modeling

- Inner face sheets
- Outer flange
Goals

• Validate vibro-acoustic modeling tools
 – Sound power transmission loss

• Later - use tools to assess optimized panel designs
Baseline Panel – Modes

1. For the mode labeled [1,1], the frequencies are 127 Hz FE and 122 Hz Exp.

2. For the mode labeled [2,1], the frequencies are 251 Hz FE and 247 Hz Exp.

3. For the mode labeled [3,1], the frequencies are 486 Hz FE and 487 Hz Exp.

4. For the mode labeled [2,2], the frequencies are 426 Hz FE and 438 Hz Exp.
Baseline Panel – Modes

![Graph showing FE Frequency (Hz) vs Experimental Frequency (Hz) for different values of n (n=1, n=2, n>2) and error conditions (No error, -10% error, +10% error).]
CHAMP Analysis Tools

Dynamic loads
- Flow turbulence
- Electromagnetic fields (motors, generators)
- Rotating machinery loads (gearsets, bearings)

Mode shapes and modal parameters of base structure(s)
(from in-vacuo FE models and/or measurements)

Acoustic impedances of surrounding and/or entrained fluid
(from BE or FE model)

Joint modal acceptance matrix (includes all cross terms)

Mechanical impedances of connected structures
(from FE models and/or measurements)

Operational Noise and Vibration
- Structural vibration cross-spectral densities,
- acoustic pressure and particle velocity cross-spectral densities,
- power flow distribution
Radiation damping from BE model included in analysis
Center panel dominates transmitted sound power.
Transmission Loss

Simulations within 3 dB of NASA SALT measurements
Next steps

• Split panel optimized design formulated
 – Assessed with analytic tools
• Structural assessments at Bell
• Structural-Acoustic assessments at Penn State
• Build and test at NASA SALT
Martin Guitar Structural-Acoustics

Principal Investigators: M.R. Shepherd, S.A. Hambric, D.C. Swanson

Sponsor: The Martin Guitar Company
CAV Transmission Loss Facility Characterization

Principal Investigators: P. Bauch and A. Barnard

Sponsor: ARL/Penn State Walker Fellowship
Standard Qualification

- **ISO 3745**
 - 12 traverse paths with 70+ discrete points

- **ASTM E90 and E2249**
 - Measurable TL ranges from 40 dB at 400 Hz and 55 dB at 10 kHz.

1/8 in. Hardboard

2 in. Acoustic Felt
Incident Field: Beamformer

- 41 point discrete linear arrays.
- Levels normalized to reference mic and d.i.
- Beam steered in frequency domain (phase shift)
• Beamwidth within tolerances

± 3 dB is diffuse for most frequencies up to 4 kHz.

Normalized One-Third Octave Band Beamformer

Beamwidth within Tolerance (Horizontal) [degrees]

Beamwidth within Tolerance (Vertical) [degrees]
\[\rho_{12_i}(kx_{1,2_i}) = \Re \left\{ \frac{G_{p_{1}p_{2_i}}(\omega,x)}{G_{p_{1}p_{2}} G_{p_{2_i}p_{2_i}}} \right\} = \frac{\sin(kx_{1,2_i})}{kx_{1,2_i}} \]

- Averaged over \(ka \)
- Agreement up to \(ka=5-15 \)
Incident Field: SCAF

\[SCAF(k) = \frac{|\rho_{\text{meas}}(kx) \cdot \rho_{\text{theory}}(kx)|^2}{[|\rho_{\text{meas}}(kx) \cdot \rho_{\text{meas}}(kx)|][|\rho_{\text{theory}}(kx) \cdot \rho_{\text{theory}}(kx)|]} \]

- Spatial correlation function summed into one-third octave bands
- Diffuse field up to 4 kHz one-third octave band.
Aircraft Panel Sonic Fatigue

Principal Investigators: Matt Shaw, PhD student, Acoustics
Dr. S.A. Hambric, Dr. R. L. Campbell, Advisors

Sponsor:
Problem statement

- **Supersonic, diffusing flow downstream of nozzle**
 - Complex surface pressure fluctuations on structural panel
 - M. Lurie and Dr. Phil Morris
- **Compute panel stress time histories and spectra**
 - Use to assess fatigue damage and life
Forcing function – space/time

Pressure vs. distance and time

- Time [s]: 0.04 to 0.13
- Position (rel nozzle exit) x/d_j: -20 to 40
- Total Pressure [Pa]: 10^4 to 10^6

Throat: $x=-0.19842$
Nozzle Exit: $x=0$
Forcing function – frequency

pressure vs frequency and position downstream

Frequency, $f d_i / u_i$

Position (rel nozzle exit), x / d_i

Spectral Density [dB re 1 Pa/Hz]

Throat $x=-0.19842$

Nozzle Exit $x=0$
CHAMP calculations

- CHAMP 1D beam response using cross-spectral densities of CFD-based forcing functions
 - (ASD = Auto-spectral density)
 - (CSD = Cross-spectral density)
Next steps

- Time-domain vs. frequency-domain calculations
- Empirical models of turbulent flow through shock cells?
- 3D flow fields, 2D stiffened panel structure
 - Validate against measurements to be made at UTRC/P&W