ADAPTIVE STRUCTURES AND NOISE CONTROL

Faculty Members

• George Lesieutre
• Mary Frecker
• Reginald Hamilton
• Zoubeida Ounaies
• Chris Rahn
• Kenji Uchino
• Gordon Warn
ADAPTIVE STRUCTURES AND NOISE CONTROL

- Zoubeida Ounaies
 - Active Fiber Composites
- Mary Frecker
 - Multi-field Responsive Origami Structures
- Chris Rahn
 - Piezo Energy Harvesting from Human Motion
- George Lesieutre
 - Multilayered Radial Isolator for Helo Noise Reduction
- Gordon Warn
 - Optimal Topology of Column Bearings to Reduce Floor Accel in Multi-story Base-isolated Buildings
Active Fiber Composites

Electroactive Materials Characterization Lab

Zoubeida Ounaies and Group
Mechanical and Nuclear Engineering,
Penn State University, University Park, PA
What we do...

Develop, synthesize, process, and characterize new electro-active, possibly nano-enhanced materials

Capabilities for synthesis and fabrication

Structure-property relationship

Sensing-Actuation-Storage Applications
Active Fiber Composites for High Strain Apps

Active fiber composites (AFC) advantages
- Flexibility
- Different shapes inexpensively
- Light weight
- Embedded easily in laminate composites
- Self powered

AFCs limitations
- Coupled electro-mechanical stimuli and hostile environments cause AFC constituents to experience nonlinear and inelastic behaviors, leading to complex failure modes
- More than 50% vol polymer, which makes behavior time- and temperature- dependent

Tensile tests

Hysteresis loops

Electro-mechanical loops
Schematic of an AFC

- Positive electrodes
- Negative electrodes
- Epoxy matrix
- Kapton tape
- PZT fibers

SEM of AFC cross section
Motivation

- Non-linearity in the piezoelectric material
- Non-uniformity of the electric field inside the AFC
Our Focus

• Use a combination of experimental and numerical approaches to examine overall behavior of AFCs to:
 – Quantify the impact of constituent properties (polymer matrix and PZT fiber) on coupled response
 – Build a model that considers non-uniform electric field behavior and time- and temperature-dependent properties
 – Conduct an exhaustive parametric study of AFC design

One outcome -> re-design an improved AFC device with optimized electro-mechanical coupling by taking advantage of technology advances in manufacturing and electronics
Multi-field responsive Origami Structures

Mary Frecker, Ph.D.
Professor of Mechanical Engineering & Bioengineering
Director, the Learning Factory

Sponsored by NSF EFRI 1240459
The research team includes faculty in design, active materials, origami math, and art.

- Jyh-Ming Lien
 - GMU
 - Origami math

- Paris von Lockette
 - Rowan
 - Active materials & modeling

- Mary Frecker
 - PSU
 - Compliant mechanisms

- Zoubeida Ounaies
 - PSU
 - Active materials

- Rebecca Strzelec
 - PSU Altoona
 - Art

- Tim Simpson
 - PSU
 - Design theory
The research vision is multi-field origami structures for active folding and unfolding into complex 3D shapes

- Initial flat sheet S_i
- Folded shape S_1 due to magnetic field
- Folded shape S_2 due to electric field
- Folded shape S_3 due to thermal field
- Unfold back to flat sheet S_i (M. Shlian)
We are developing dielectric elastomers to achieve active folding
We are also developing magneto-active elastomers capable of active folding and unfolding.
We have demonstrated 3D folding and locomotion with the MAE composite material
A multi-field responsive DE / MAE sheet bends in orthogonal directions due to electric / magnetic fields.
Piezoelectric Energy Harvesting from Human Motion

Xiaokun Ma
Christopher D. Rahn
Department of Mechanical and Nuclear Engineering
Penn State University
Piezoelectric EH Devices

Bimorph energy harvester with a tip proof mass
Device dimension: $53.0 \times 31.7 \times 0.675 \text{ mm}^3$
(Kim, Smart Materials and Structures, 2010)

Impulse-excited energy harvester
Cantilever dimension: $72 \times 5 \times 0.5 \text{ mm}^3$
(Pillatsch, Smart Materials and Structures, 2012)

Parametric frequency increased generator
Inertial mass: 9.3 g, Total volume: 2.8 cm^3
(Galchev, J. Microelectromechanical Systems, 2012)
Piezoelectric EH Benchmarks

<table>
<thead>
<tr>
<th>Reference</th>
<th>Material</th>
<th>Size</th>
<th>Power (µW)</th>
<th>Power/Area*Accel (µW/cm²g)</th>
<th>Frequency (Hz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kanno 2012</td>
<td>KNN</td>
<td>M</td>
<td>1.1</td>
<td>1.96</td>
<td>1036</td>
</tr>
<tr>
<td>Jung 2010</td>
<td>PVDF</td>
<td>M</td>
<td>2.9</td>
<td>3.12</td>
<td>143</td>
</tr>
<tr>
<td>Ng 2004</td>
<td>PZT</td>
<td>G</td>
<td>35.5</td>
<td>3.96</td>
<td>100</td>
</tr>
<tr>
<td>Hajati 2010</td>
<td>PZT</td>
<td>G</td>
<td>22</td>
<td>4.58</td>
<td>1300</td>
</tr>
<tr>
<td>Lu 2004</td>
<td>PZT</td>
<td>m</td>
<td>660</td>
<td>12.65</td>
<td>2939</td>
</tr>
<tr>
<td>Morimoto 2010</td>
<td>PZT</td>
<td>M</td>
<td>244</td>
<td>51.7</td>
<td>123</td>
</tr>
<tr>
<td>Defosseux 2011</td>
<td>AIN</td>
<td>m</td>
<td>0.63</td>
<td>64.12</td>
<td>214</td>
</tr>
<tr>
<td>Muralt 2009</td>
<td>PZT</td>
<td>µ</td>
<td>1.4</td>
<td>72.92</td>
<td>870</td>
</tr>
<tr>
<td>Liang 2012</td>
<td>PZT</td>
<td>G</td>
<td>970</td>
<td>80.83</td>
<td>42</td>
</tr>
<tr>
<td>Fang 2006</td>
<td>PZT</td>
<td>m</td>
<td>2.16</td>
<td>81.51</td>
<td>608</td>
</tr>
<tr>
<td>Kim 2010</td>
<td>PZT</td>
<td>G</td>
<td>160</td>
<td>155.23</td>
<td>41.63</td>
</tr>
<tr>
<td>Park 2010</td>
<td>PZT</td>
<td>m</td>
<td>1.1</td>
<td>156.7</td>
<td>528</td>
</tr>
<tr>
<td>Erica 2005</td>
<td>PZT</td>
<td>G</td>
<td>1800</td>
<td>183.35</td>
<td>2580</td>
</tr>
<tr>
<td>Marzencki 2008</td>
<td>AIN</td>
<td>m</td>
<td>0.55</td>
<td>277.5</td>
<td>214</td>
</tr>
<tr>
<td>Aktakka 2011</td>
<td>PZT</td>
<td>M</td>
<td>205</td>
<td>278.91</td>
<td>154</td>
</tr>
<tr>
<td>Liao 2010</td>
<td>PZT</td>
<td>G</td>
<td>1900</td>
<td>283.58</td>
<td>237</td>
</tr>
<tr>
<td>Karami 2012</td>
<td>PZT</td>
<td>M</td>
<td>8</td>
<td>323.54</td>
<td>39</td>
</tr>
<tr>
<td>Friswell 2012</td>
<td>MFC</td>
<td>G</td>
<td>10</td>
<td>598.3</td>
<td>0.46</td>
</tr>
<tr>
<td>Durou 2010</td>
<td>PZT</td>
<td>m</td>
<td>13.9</td>
<td>735.45</td>
<td>76</td>
</tr>
</tbody>
</table>

ASSIST Goals:
- Small devices
- Low frequency excitation
- High µW/cm²g

Promising Approaches:
- Bistable devices
- Compliant mechanisms
- High performance materials and flexible substrates
- Strain harvesting

Size (area in cm²): 0-.001 (n), .001-.01 (µ), .01-.1 (m), .1-1 (M), and >1 (G)

Note: Mix of average/peak power and device/material area
Piezo Unimorph Cantilever Model for EH Analysis / Design

Euler-Bernoulli beam model:

Beam mechanics:

\[
YI \frac{\partial^4 \omega_{rel}(x, t)}{\partial x^4} + c_s I \frac{\partial^5 \omega_{rel}(x, t)}{\partial x^4 \partial t} + c_a \frac{\partial \omega_{rel}(x, t)}{\partial t} + m \frac{\partial^2 \omega_{rel}(x, t)}{\partial x^2} = -m \frac{\partial^2 \omega_b(x, t)}{\partial t^2}
\]

Coupled electrical circuit equation:

\[
\frac{\varepsilon^{s33} b L \frac{dv(t)}{dt}}{h_p} + \frac{v(t)}{R_l} = - \int_{x=0}^{L} d_{31} Y_p h_{pc} b \frac{\partial^3 \omega_{rel}(x, t)}{\partial x^2 \partial t} dx
\]

Boundary conditions:
- Cantilevered at \(x = 0 \).
- Proof mass at \(x = L \).

Model parameters:
- \(c_s \): internal damping term (strain rate)
- \(d_{31 \, \text{piezoelectric}} \)
- \(Y, Y_p \): beam, piezo Young's modulus
- \(m \): mass per unit length of the beam
- \(c_a \): external viscous damping term (air)
- \(\varepsilon^{s33} \): permittivity
- \(I \): moment of inertia
- \(R_l \): load resistance
- \(h_{pc} \): distance from PZT center to neutral axis

Model input: Base excitation
Model outputs: Beam voltage \(v(t) \), current, power and tip displacement
Energy Harvester Model Results

![Diagram showing power and tip displacement graphs with different resistances.](image)

- **Power**

 - Yellow: $R = 1 \, \text{M}\Omega$
 - Dashed: $R = 100 \, \text{k}\Omega$
 - Green: $R = 10 \, \text{k}\Omega$
 - Red: $R = 1 \, \text{k}\Omega$
 - Blue: $R = 100 \, \text{\Omega}$

- **Tip Displacement**

$\frac{\langle \omega^2 Y_0 \rangle^2}{\text{W.s}^2/\text{m}^2}$

Frequency (Hz)
Next Steps: Model Based Design of ASSIST Piezoelectric Harvesters

Cantilevered beam design:

![Cantilevered beam design diagram]

Circular membrane design:

![Circular membrane design diagram]

New model under development...(stay tuned!)
Multilayered Radial Isolator for Helicopter Interior Noise Reduction

Pauline Autran
David J. Materkowski
George A. Lesieutre
Isolation mounts can reduce vibration transmitted to helo cabin

- Interior noise: safety and comfort
- Need to attenuate vibration transmission
- Concept: multi-layered radial isolators at gearbox
 - Statically stiff, dynamically soft?

- Models
 - Finite element
 - Augmented assumed modes
- Transmissibility exhibits “stop bands”
- Validated experimentally
Multilayered axial isolator exhibits stop band over key freq range

- Stop band freqs bounded by high global mode and low local mode
- Objective: reduce vibration in the frequency range [500Hz; 2000Hz]
Can a radial isolator offer similar performance?

Conceive, model and design layered radial isolator
Models can indicate potential isolation performance

- Mode shapes and frequencies
- Transmissibility

Finite-element

all modes of interest

Augmented assumed-modes

- Assumed-modes global
- Analytical local
Mode shapes and frequencies of a five-layered isolator agree well

- Pure rotational mode: $f = 71.5$ Hz
- Translation with in-phase motion of the metal layers: $f = 105.2$ Hz
- Translation with out-of-phase motion of the metal layers: $f = 179.5$ Hz
- Bending of the outermost layer: $f = 361.8$ Hz
Better performance achieved with a five-layered isolator

Characteristics of five-layered isolator

<table>
<thead>
<tr>
<th></th>
<th>metal</th>
<th>elastomer</th>
</tr>
</thead>
<tbody>
<tr>
<td>E (Pa)</td>
<td>2.10E+11</td>
<td>1.20E+06</td>
</tr>
<tr>
<td>$ρ$ (kg/m3)</td>
<td>7850</td>
<td>1000</td>
</tr>
<tr>
<td>Poisson's ratio</td>
<td>0.3</td>
<td>0.499</td>
</tr>
<tr>
<td>thickness (m)</td>
<td>0.008</td>
<td>0.005</td>
</tr>
<tr>
<td>loss factor</td>
<td>0.0005</td>
<td>0.01</td>
</tr>
<tr>
<td>Inner radius (m)</td>
<td>0.021</td>
<td></td>
</tr>
</tbody>
</table>

- Stop band: 500 to 2011 Hz
- Transmissibility: 0.0009

The two models agree very well in the target frequency range
Experiments were performed to validate the computational models

Accelerance data recorded at the innermost and outermost rings over a 5000 Hz range. Gaussian noise and linear sine sweep forcing signals were used for experimental verification.
Five-layer assumed-modes model and measurement agree pretty well.

Stop band: 800 / 880 Hz – 2470 Hz

Transmissibility: 0.10 vs. 0.21 (50%)

Model does not include frequency-dependence of elastomer behavior.
Multilayered radial isolators reduce transmitted vibration

- Models (3 & 5 lyr)
 - Finite element
 - Augmented assumed modes (2000 X faster)

Helo interior noise: safety and comfort

Need to attenuate vibration, 500-2000 Hz

- Transmissibility shows predictable “stop bands”

- Multilayered radial isolator at gearbox
 - Designs can

- Validated experimentally
 - Transmissibility <20% (900-2500)
Optimal Topology of Column Bearings for Reducing Vertical Floor Acceleration in Multi-story Base-isolated Buildings

Gordon Warn¹
Mehmet Unal²

Department of Civil and Eng. Engineering
1. Assistant Professor
2. PhD Candidate
Shape Memory Alloys: Material Design

Reginald F. Hamilton, PhD
Assistant Professor of Engineering Science and Mechanics
Optimal Topology of Column Bearings for Reducing Vertical Floor Acceleration Demands in Multi-story Base Isolated Buildings

Gordon Warn1
Mehmet Unal2

Department of Civil and Eng. Engineering
1. Assistant Professor
2. PhD Candidate
Background – Base isolation

Fixed Base

Isolated

ACCELERATION

PERIOD

DISPLACEMENT

PERIOD

PERIOD SHIFT

PERIOD SHIFT
Background – Base isolation hardware

Elastomeric
- Low-damping natural rubber
- High-damping rubber
- Lead-rubber

Sliding
- Friction Pendulum™
- Triple Pendulum™
- Others
Background – Elastomeric bearings

Shape factor \((S)\):

\[
S = \frac{\text{Loaded area}}{\text{Area free to bulge}}
\]

<table>
<thead>
<tr>
<th>Country</th>
<th>Application</th>
<th>Typical range of Shape factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>U.S.</td>
<td>Non-seismic bridge</td>
<td>4 – 6</td>
</tr>
<tr>
<td>U.S.</td>
<td>Seismic Isolation</td>
<td>15 – 25</td>
</tr>
<tr>
<td>Japan</td>
<td>Seismic Isolation</td>
<td>> 30</td>
</tr>
</tbody>
</table>

Bonded rubber diameter

Thickness of individual rubber layer

Area free to bulge

Loaded area
Earthquake hazard & Base isolated periods

Elastic earthquake response spectra
- 6.5 – 8 Magnitude
- R < 10 km
- Stiff soil / Rock
- Damping - 5% of critical

Base isolated periods
- Horizontal: 2.5 s – 4 s
- Vertical: 0.05 s – 0.2 s
Problem statement

1. Base isolation does not protect against vertical ground motion
2. Vertical period aligns with dominate frequency content
3. Large vertical acceleration demands can lead to:
 - Ceiling system failure
 - Piping system failure
 - Content disruption
Vertically distributed flexibility (VDF) concept

Base isolated

Base isolated with VDF

Base Isolators
Column Bearings

S=4
S=5
S=7
S=30
VDF model

\[
\begin{align*}
\begin{bmatrix} M \end{bmatrix} \{ \ddot{U} \} + \begin{bmatrix} C \end{bmatrix} \{ \dot{U} \} + \begin{bmatrix} K \end{bmatrix} \{ U \} &= \begin{bmatrix} M \end{bmatrix} \{ I \} \{ \ddot{U}_g \} \\
\text{Influence vector}
\end{align*}
\]
Proof of VDF concept using 9 story frame

1. VDF effectively reduced vertical acceleration demands
2. VDF does not alter horizontal response
3. Location of column bearings arbitrarily chosen
Multi-objective optimization

Objectives:
1. Minimize cost of VDF configuration
2. Minimize $\max_i q_i$

 q_i: median vertical acceleration of ith floor

Evolutionary Algorithm
- Nondominated sorting genetic algorithm (NSGA II)
- Fast and Elitist Multiobjective (MOEA)
- Deb et al. (2000)
Multi-objective optimization – Three story

Generations of pareto front surface

- Generation 1
- Generation 4
- Generation 10

Cost in USD (millions)

Max $|q_i| (g)$
Multi-objective optimization – Three story

Generation 10

Cost in USD (millions)

Max $|q_i| (g)$

1 level of VDF

3 levels of VDF

Base isolated

1 level of VDF

3 levels of VDF

Peak vert. abs. acc. (g)

Floor
Multi-objective optimization – Nine story

Generations of pareto front surface

![Graphs showing generations of the pareto front surface with cost in USD (millions) on the x-axis and Max |q_i| (g) on the y-axis.]
Multi-objective optimization – Nine story

- Base isolated
- 2 levels of VDF
- 4 levels of VDF

Cost in USD (millions)

Max $|q_i| (g)$

Generation 10

- 2 levels of VDF
- 4 levels of VDF

Peak vert. abs. acc. (g)

Floor

2013 CAV Workshop
Multi-objective optimization – Twenty story

Generations of pareto front surface

- Generation 1
- Generation 4
- Generation 10

Cost in USD (millions)
Multi-objective optimization – Twenty story

Generation 10

4 levels of VDF

9 levels of VDF

Max $|q_i| (g)$

Cost in USD (millions)

Base isolated

4 levels of VDF

9 levels of VDF

Floor 14
Floor 9
Floor 6
Floor 2

Floor 12
Floor 11
Floor 7
Floor 6
Floor 4
Floor 3
Floor 2

Floor 7
Floor 9
Floor 6
Floor 2

Floor 3

2013 CAV Workshop
Summary

1. VDF Concept effectively reduced vertical acceleration demands

1. Multi-objective evolutionary algorithms useful tool to quantify trade-off

VDF Concept effectively reduced vertical acceleration demands. Multi-objective evolutionary algorithms are a useful tool to quantify the trade-off. VDF is most beneficial in taller multi-story buildings.
Summary

1. VDF Concept effectively reduced vertical acceleration demands

1. Multi-objective evolutionary algorithms useful tool to quantify trade-off

1. VDF most beneficial in taller multi-story buildings