Propagation and Radiation

Group Leader: Dr. Victor Sparrow

Faculty Affiliates:
- Dr. Anthony Atchley
- Dr. Tom Gabrielson
- Kathleen Hodgdon
- Dr. Robert Melton
- Dr. Dennis Thomson

 Et al.

Graduate Students:
- Sang Cho – PhD
- Andrew Christian – Masters (ACS)
- Whitney Coyle – PhD
- Alexandre Jolibois – PhD
- Kim Riegel – PhD
- Beom Soo Kim – PhD
- Amanda Lind – PhD
- Kieran Poulain – Masters (ACS)
- Rachel Romond – PhD
- Joyce Rosenbaum – PhD
- Joe Salamone – PhD
- Brian Tuttle – PhD
Last Year’s Highlights

Graduate Students:
Sang Cho – PhD
Andrew Christian – Masters (ACS)
Whitney Coyle – PhD
Alexandre Jolibois – PhD
Kim Riegel – PhD
Beom Soo Kim – PhD
Amanda Lind – PhD
Denise Miller – PhD
Kieran Poulain – Masters (ACS)
Joyce Rosenbaum – PhD
Joe Salamone – PhD
Brian Tuttle – PhD
Today’s Highlights

Graduate Students:
 Sang Cho – PhD
 Andrew Christian – Masters (ACS)
 Whitney Coyle – PhD
 Alexandre Jolibois – PhD
 Kim Riegel – PhD
 Beom Soo Kim – PhD
 Amanda Lind – PhD
 Rachel Romond – PhD
 Kieran Poulain – Masters (ACS)
 Joyce Rosenbaum – PhD
 Joe Salamone – PhD
 Brian Tuttle – PhD
Update on sonic boom propagation

Victor W. Sparrow, vws1@psu.edu
The Pennsylvania State University

Modified from
17 April 2012
CAEP/WG1/SSTG Meeting
Norrköping, Sweden
and
Ph.D. defense of Kim Riegel
This work is funded by the Federal Aviation Administration/
National Aeronautics and Space Administration/
Transport Canada
PARTNER Center of Excellence
Projects 8 and 24 at Penn State and Purdue Universities
managed by Sandy Liu and Mehmet Marsan.

Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author and do not necessarily reflect the views of PARTNER sponsoring organizations.
Selected Research Highlight

• PARTNER Center Project 8 extension of NASA-sponsored research on ray-tracing model for sound around buildings
 – Penn State University
 – Investigators: K. Riegel and V. Sparrow
 – Ph.D. thesis will be released soon.

• Predict sound levels in urban canyons
 – Improved outdoor signatures needed for subjective tests and for use as input to outdoor-indoor transmission models
 – Method: Ray-tracing with/without radiosity (diffusion model)
 • Diffusion: NON-SPECULAR reflections
 – Preliminary result: there is no “buildup” of sound energy in between buildings during the passage of a sonic boom
Urban Canyon

Environment 1

Environment 2

Boom Direction
Input Signal

<table>
<thead>
<tr>
<th>Material</th>
<th>63 Hz</th>
<th>125 Hz</th>
<th>250 Hz</th>
<th>500 Hz</th>
<th>1000 Hz</th>
<th>2000 Hz</th>
<th>4000 Hz</th>
<th>8000 Hz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Concrete</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.03</td>
<td>0.03</td>
</tr>
</tbody>
</table>
Varied Parameters

• Diffusion – 0% or 50%
• Elevation Angle – 20° and 40°
• Azimuthal Angle – 0°, 45° and 90°
• Heights – 3 meters, 6 meters, 12 meters, 24 meters
 – 1, 2, 4, and 8 stories
• Width – 5.5 meters, 9 meters, 16 meters
 – 1 meter sidewalk on each side
 – 1 lane, 2 lanes, or 4 lanes
Frequency Range

• Using PLdB requires that all frequency content is included for analysis
 – Makes the results more comparable to other sonic boom studies

• 12 and 24 meter building this will be accurate except at the very lowest frequencies

• 3 and 6 will be accurate for a much smaller range of frequencies
Single City Block – Signal Shape

- Diffusion significantly changes the shape of the signals
 - Reduces amplitude significantly
- No trend in amplitude as height increases
Single City Block - Sidewalk

• Note the regular pattern of shadow zones
 – Increased number of shadow zones with height

• 0° azimuthal angle
 – No trend observed with any of the varied parameters

• Consistently lower PLdB for 50% diffusion
 – Regular pattern along sidewalk
Single City Block
- **Wall**
 - These movies show the stark shadow zones
 - Distinct patterns
 - Diffuse shows less stark shadow zones
 - Lower levels all around
 - 45° azimuthal angle, 20° elevation angle
Four-way Intersection – Signal Shape

- Microphone A has very similar signal shapes to the previous environment
- Microphone B has similar shape to no buildings for all 0° azimuthal angle runs
Four Way Intersection - Sidewalk

- Still has strong shadow zones
 - Continued through the other side of the intersection
- 0° azimuthal angle clearly shows the intersection in the PLdB levels
- Diffuse PLdB is still lower next to the buildings
Four Way Intersection - Wall

- Gap in the buildings are obvious here
- Still has a distinct pattern of shadow zones

No diffusion

50% diffusion
Conclusions

• PARTNER work on understanding low-boom sonic booms continues.

• Current work shows
 – It is possible to model sonic boom reflections around high-rise buildings (skyscrapers)
 – Importance of diffuse sound energy
 – No “buildup” of sound energy
 – For tall buildings, sometimes little sound energy makes it to the ground

• Work is continuing in related PARTNER projects.

Reference

Source Emission and Propagation
Project 2

Presentation by Vic Sparrow, lead investigator
Hua (Bill) He, project manager

Opinions, findings, conclusions and recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of PARTNER sponsoring organizations.

Modified from slides for
18th Advisory Board Meeting
March 27-29, 2012
Arlington, VA
Motivation

- Develop improved models for the emission of sound from aircraft and propagation from source to receiver
- Enhance AEDT* and its impact on aviation environmental management

Tasks of previous years
- Thrust reverser operations during landing
- Low frequency propagation
- Effects of terrain and meteorology and long range propagation

Task just completed
- High altitude en-route noise

Task just underway
- Linking AERMOD/AERMET meteorology outputs to noise propagation models

*AEDT: Aviation Environmental Design Tool
Motivation for en-route modeling

- Need to predict noise over broad area
 - current aircraft
 - future advanced propulsions, such as open rotor
- Technical gaps in modeling sound propagation at long ranges

Objective

- Improve models of sound propagation from cruise altitude

Context

- Concerns over noise impact in low-ambient noise areas such as natural parks
- Need to model noise in all phases of flight
Funding / participants

• Past year funding from FAA’s ATMP* noise research program (Western Pacific Office). Progress still reported to and managed under COE/Partner. Contracts managed by DOT Volpe National Transportation Systems Center

• Contract to Penn State
 – Victor Sparrow, Kieran Poulain

• Volpe project management team
 – Eric Boeker, Noah Schulz, Clay Reherman

• FAA PARTNER Bridge Funding 2011/2012
 – Penn State: Victor Sparrow, Rachel Romond

*ATMP: Air Tour Management Plan
Propagation Plan / Schedule (Penn St.)

• Project officially started on February 4, 2011

• Task 1: Assess existing models to accurately account for long distance noise propagation
 – Due 3 August 3, 2011 Delivered on time.

• Task 2: Assess need for additional en-route data
 – Due August 3, 2011 Delivered on time.

• Task 3: Develop recommendations for modification of existing tools to model long distance noise propagation
 – Tech. report on using AEDT noise source databases with updated propagation algorithms due November 4, 2011
 – Final reports due March 29, 2012 Delivered on time.
Comparison of INM vs. other software

- $L_{A,\text{max}} [\text{dB}_A]$ vs. range in downwind refracting plane
- Stationary point source at $z_s=10$ km
- Temperature & humidity profiles from 2004 Bass/Sutherland paper
- B 777 1/3 OB spectrum retro fitted from INM NPD curves
- Linear wind speed profile: $v(z) = 3 \times z$ where z in km [not applicable in INM]
- INM inputs: 15°C, various RH tested, 1 m long segment [CPU ≈ 5 s]
NPD Refinement Procedure

Summary of proposed method – for each slant distance:

Spectral class normalized at 70 dB at 1 kHz, taken 305 m from source

For each 1/3 OB frequency:
- ANSI S1.26 vertical cumulative absorption (with PT to 1/3 OB correction term) for specific weather model

Add level difference to original NPD

Refined NPD

LogΣ (1/3 OB) = SPL

For each 1/3 OB frequency:
- SAE absorption (T=20°C, rh=70%)

Back to source position
Influence of atmospheric data on refined NPD

- 2010 seasonal weather average above Pittsburgh, PA.
- B777-300 departure NPD (80,000 pounds of thrust)

Summer seasons enhance louder levels (humidity)
Influence of spectral class on refined NPD

- Bass/Sutherland 2004 weather model
- two distinct spectral classes: id 105 (B777-300) and id 104 (MD-83)

The refined process handles the spectral class dependent inputs
Extend slant-distances for en route

- Largest slant-distance in INM is 25,000 feet
- Need extension for slant-ranges from 25,000 to 135,000 feet
- Use Bass/Sutherland 2004 weather model & B777-300 departure NPD data
- From 35,000 feet onwards: inclined straight lines (no refraction)
Effect of wind direction on contour shape ~ moving source effects included ~

- SEL contours $[\text{dB}_A]$ using AERNOM & moving source effects
- Overflight track at $z_s=10$ km, aircraft moves in $+X$ direction.
- Temperature & humidity profiles from 2004 Bass/Sutherland paper
- B 777 1/3 OB spectrum retro fitted from INM NPD curves
- Linear wind speed profile: $v(z) = 5 \times z$ where z in km

Wind direction same as flight

Crosswind

AEDT cannot do this currently.
New: linking noise prediction to dispersion modeling

- Penn State work just begun
- Assess efficacy of emissions atmospheric models for noise prediction

\[c(z) \] is speed of sound profile. Other symbols are from meteorology.
Summary

• Penn State contract with Volpe was completed successfully and on time.
 – Lots of good things for FAA/Volpe to think about.
 – There is much left to do.

• Recommend that INM could be improved by
 – Including NPD refinement based on atmospheric profiles
 – Extending slant range distances for en-route modeling
 – Eventually move toward curved ray approach

• We value your feedback. Thanks!
References

- Nord 2000 (2010), www.delta.dk,

Thanks!

Contact Information:
– Vic Sparrow
– vws1@psu.edu
– +1 (814) 865-6364