EXCERPT FROM:

Damping Models for Shear Beams with Applications to Spacecraft Wiring Harnesses

George A. Lesieutre and Jeffrey L. Kauffman
The Pennsylvania State University

Vít Babuška
Sandia National Laboratories

24 APR 2012

Presenting a new viscous damping model for shear beams that yields approximately constant modal damping

Shear Beam & Model Development

Damping Model Results

Ardelean et al. (2010)
http://upload.wikimedia.org/wikipedia/commons/thumb/e/e4/Plate_theory.svg/500px-Plate_theory.svg.png
Power & data cables modify spacecraft dynamics, especially at high frequency

- Cabling can account for 30% of spacecraft dry mass!
 - Increasing power / data reqts
 - Decreasing density of structure
- Accurate dynamics model is essential for spacecraft design
 - Launch loads
 - Precision control
- Current models (structure only) over-predict response levels
 - Cables add damping
- Ground testing can augment models, but is incomplete

Ardelean et al. (2010)
Spacecraft & cable dynamics are coupled through cable tiedowns

Goodding (2008)
Ardelean et al. (2010)
Cables are modeled using effective stiffnesses determined experimentally

- **Extension testing:** EA
- **Lateral testing:** EI & κG

Sandia NL — Ardelean et al. (2010)
Experimental results show that modal damping is approximately constant.

- 12 families
- 100 cables
Cables modeled as shear beams initially with “structural” damping

- By researchers at Sandia / AFRL / CSA Engineering / Schafer Corp.
 - Goodding, Ardelean, Babuška, Coombs, et al. (2008-2011)

- Predicts natural frequencies, but damping model is inadequate

- Time-domain model essential
 - Transients & impact response
 - Nonlinearities

- Ideal: ~constant damping
 - Higher damping in higher modes to reduce response

\[w = \text{transverse displacement} \]
\[\varphi = \text{rotation due to bending} \]
\[\beta = \text{shear angle} \]
Shear- and bending-related damping terms yield good results

- Introduce two internal shear forces for damping
 - Associated with time rate of change of shear & bending angles
 \[V = -\alpha_\beta \dot{\beta} - \alpha_\phi \dot{\phi} \]

- EOM with damping
 \[-\rho A \ddot{w} + \kappa AG (\varphi' + w'') = -q - \alpha_\beta \dot{\beta}' - \alpha_\phi \dot{\phi}' \]
 \[EI \varphi'' + \kappa AG (\varphi + w') = 0 \]

- Shear- and bending-related damping contributions are explicitly separated
 \[\zeta_m = \frac{1 + \alpha_\beta \varepsilon m^2}{2\sqrt{\rho AEI}} \frac{\alpha_\phi}{\sqrt{1 + \varepsilon m^2}} \]
 \[\zeta_m \sim \begin{cases} \frac{\alpha_\phi}{\varepsilon m^2} << 1 \\ \alpha_\beta m \varepsilon m^2 >> 1 \end{cases} \]
A range of damping trends available from choice of shear & bending terms

\[\frac{\alpha_{\beta}}{\alpha_{\varphi}} = 1 \]
\[\frac{\alpha_{\beta}}{\alpha_{\varphi}} = \frac{3}{4} \]
\[\frac{\alpha_{\beta}}{\alpha_{\varphi}} = \frac{1}{2} \]
\[\frac{\alpha_{\beta}}{\alpha_{\varphi}} = \frac{1}{4} \]
\[\frac{\alpha_{\beta}}{\alpha_{\varphi}} = 0 \]

Normalized Modal Damping

Mode Number m
Proposed model with motion-, shear-, and bending-based terms fits data well.

\[\alpha_M = 0.043 \]
\[\alpha_\phi = 0.038 \]
\[\frac{\alpha_\beta}{\alpha_\phi} = 0.3 \]
Time-domain damping model for shear beams captures dynamics of spacecraft cabling

- Behavior can be separated into bending- and shear-dominated regimes
 - Corresponding physical understanding
 $$-\rho Aw + \kappa AG (-\varphi' + w'') = -q - \alpha \beta \dot{\psi}' - \alpha \varphi \dot{\phi}'$$
- Freq-independent modal damping achievable in bending region
 - Can control damping in shear regime
 - Can achieve best possible freq-indep
- Damping model can be readily implemented using FEM
 - Uses conventional $K, K_G, \text{ & } M$ matrices
- Model predictions agree well with experimental data

$$\zeta = \frac{\alpha \varphi}{2\sqrt{\rho AEI}} \left(1 + \frac{\alpha \beta \epsilon m^2}{\alpha \varphi \epsilon m^2}\right)$$
ADAPTIVE STRUCTURES AND NOISE CONTROL

Faculty Members

- George Lesieutre
- Mary Frecker
- Reginald Hamilton
- Zoubeida Ounaies
- Chris Rahn
- Kenji Uchino
Lesieutre projects

• Piezoelectric-based Vibration Reduction of Turbomachinery Bladed Disks via Resonance Frequency Detuning
 – NASA GRC; student: Jeff Kauffman

• Multistate Fluidic Lag Damper
 – Lord Corp (w/ Smith); Conor Marr

• **Damping Models for Spacecraft Wiring Harnesses**
 – AFRL / Sandia; Jeff Kauffman

• Multi-Layered Cylindrical Isolator for Helicopter Gearbox Shaft Isolation
 – Penn State; Pauline Autran

• Variable Thermal Conductivity Structures for Spacecraft Thermal Control
 – AFOSR (w/ Frecker, Adair); Becky Stavely
Piezo-based frequency detuning has potential to improve turbine blade life

- Reduced response needed in blisks
 - Conventional damping unsuccessful

- Use “switchable” piezo stiffness to de-tune blade freqs from excitation
A layered cylindrical isolator has the potential to reduce helicopter interior noise (shaft / GB housing)

- Seek a stop-band from 500-2000 Hz
- End of band defined by thickness modes
- Start of band complex relative to 1-D isolators
- Assumed-modes model for rapid analysis
Dr. Frecker's research projects focus on optimal design & fab of compliant mechanisms for medical & aerospace apps

1 mm Compliant Forceps

Collaborators:
Dr. J. Adair, MSE
Dr. C. Muhlstein, MSE
Dr. R. Haluck, Surgery
Dr. A. Mathew, Gastroenterology

Students:
Milton Aguirre
Greg Hayes

Sponsor: NIH NIBIB

Cellular Contact-Aided Compliant Mechanisms

Collaborators:
Dr. J. Adair, MSE
Dr. G. Lesieutre, AeroE

Students:
Vipul Mehta
Samantha Cirone
Greg Hayes

Sponsor: NSF CMII

Compliant Spine for Passive Morphing of Ornithopter Wings

Collaborator:
Dr. J. Hubbard, U. Maryland

Student: Yash Tummala

Sponsor: AFOSR
Optimization on \(h/l \) and \(\theta \) shows that the best design depends on the input velocity. Contact can increase energy absorption by 65%.

Lower \(h/l \) values due to manufacturing constraints.

Student: Jennifer Hyland
Collaborators:
Dr. J. Adair, MSE
Dr. G. Lesieutre, AeroE
Sponsor: NSF CMII
A nonlinear compliant spine is optimally designed for passive reconfiguration of ornithopters.

Student: Yashwanth Tummala
Collaborator: Dr. James E. Hubbard Jr., UMd
Sponsor: AFOSR
Natural Orifice Transluminal Endoscopic Surgery (NOTES) [1]

References
Shape Memory Alloys: Material Design

Reginald F. Hamilton, PhD
Assistant Professor of Engineering Science and Mechanics
The Electroactive Materials Characterization Laboratory

Zoubeida Ounaies and group
Research Focus

Materials exhibiting electro-mechanical coupling — such as piezoelectric and ferroelectric ceramics, electro-active polymers, and nano-composites — for sensing, actuation, electrical energy harvesting, conversion and storage.
What we do...

Develop, synthesize, process, and characterize new adaptive / smart materials

Capabilities for synthesis and fabrication

Structure-property relationship for Sensing-Actuation-Storage
High Performance Piezoelectric Actuators and Wings for Nano Air Vehicles
 - AFOSR; Kiron Mateti (PhD 2012), Rory Byrne-Dugan (MS 2012)

EFRI-BSBA: Learning from Plants – Biologically-Inspired Multi-Functional Adaptive Structures
 - NSF, Bin Zhu (PhD 2013)

LORD Rotorcraft Center Fellow
 - Lloyd Scarborough (PhD 2012)

Future: battery research