This presentation describes research on the physics of human speech sound production. A classification for speech sound types is given, and correlated to aerodynamic or aeroelastic processes involved. Results from two focus areas are presented. The first addresses speech synthesis using physics-based models sounds production by turbulent jets in the vocal tract. Aeroacoustic theory was used to develop a reduced-order model of turbulent jet behavior. This model is implemented in an articulatory vocal tract model to synthesize vowel-consonant-vowel sequences, for consonants produced by turbulent jets. The second area, focused on voiced sound production, has worked to clarify the principal aerodynamic, aeroacoustic, and energy transfer mechanisms, using a combination of physical model measurements, computational modeling, and patient data.

Acknowledgements

Author gratefully acknowledges support from the National Science Foundation (NSF-9800999) and the National Institutes of Health (R01DC054642), and the following collaborators: Cecil Coker, Robert Kubli, James Flanagan, Daniel Sinder, Timothy Wei, Michael Barry, Benjamin Cohen, Sid Khosla, Keith Peterson, Daniel Leonard, Erica Sherman, Lucy Zhang, Xingshi Wang, Lori Lambert, Jubiao Yang, Elizabeth Campo, Michael McPhail, Robert Hillman, Daryush Mehta, and Feimi Yu.

Figure 1. Cutaway of human upper airway, where speech sounds are made.
References

